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1
APPARATUS FOR CALCULATING AND
RETAINING A BOUND ON ERROR DURING
FLOATING POINT OPERATIONS AND
METHODS THEREOF

CROSS-REFERENCE TO RELATED
APPLICATIONS

This nonprovisional application claims the benefit of U.S.
Provisional Patent Application No. 62/246,021 filed on Oct.
24, 2015, U.S. Provisional Patent Application No. 62/277,
137 filed on Jan. 11, 2016, and U.S. Provisional Patent
Application No. 62/375,422 filed on Aug. 15, 2016, which
are incorporated herein in their entirety.

FIELD OF INVENTION

This invention relates generally to logic circuits that
perform certain floating point arithmetic operations in a
floating point processing device and, more particularly,
methods or arrangements for processing data by operating
upon the order or content of the data to calculate and retain
a bound on error introduced through alignment and normal-
ization.

BACKGROUND OF THE INVENTION

In the design of floating point arithmetic systems for use
in a floating point processing device, it is desirable that
results are consistent to achieve conformity in the calcula-
tions and solutions to problems even though the problems
are solved using different computer systems.

An American national standard has been developed in
order to provide a uniform system of rules for governing the
implementation of floating point arithmetic systems. This
standard is identified as IEEE Standard No. 754-2008 and
international standard ISO/IEC/IEEE 60599:2011, which
are both incorporated by reference herein. The standard
specifies basic and extended floating point number formats,
arithmetic operations, conversions between integer and
floating point formats, conversions between different float-
ing point formats, conversions between basic format floating
point numbers and decimal strings, and the handling of
certain floating point exceptions.

The typical floating point arithmetic operation may be
accomplished using formats of various (usually standard)
widths (for example, 32-bit, 64-bit, etc.). Each of these
formats utilizes a sign, exponent and fraction field (or
significand), where the respective fields occupy predefined
portions of the floating point number. For example, in the
case of a 32-bit single precision number the sign field is a
single bit occupying the most significant bit position; the
exponent field is an 8-bit quantity occupying the next-most
significant bit positions; the fraction field occupies the least
significant 23-bit positions. Similarly, in the case of a 64-bit
double precision number the sign field is a single bit, the
exponent field is 11 bits, and the fraction field is 52 bits.
Additional formats provide the same information, but with
varied field widths, with larger field widths providing the
potential for greater accuracy and value range.

After each floating point result is developed, it must be
normalized and then rounded. When the result is normal-
ized, the number of leading zeros in the fraction field is
counted. This number is then subtracted from the exponent,
and the fraction is shifted left until a “1” resides in the most
significant bit position of the fraction field. Certain floating
point answers cannot be normalized because the exponent is
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already at its lowest possible value and the most significant
bit of the fraction field is not a “1.” This is a “subnormal
number” with fewer significant digits than a normalized
number.

In designing the hardware and logic for performing float-
ing point arithmetic operations in conformance with this
standard, it is necessary and desirable to incorporate certain
additional indicator bits into the floating point hardware
operations. These indicator bits are injected into the fraction
field of the floating point number, and are used by the
arithmetic control logic to indicate when certain conditions
exist in the floating point operation. In non-subnormal
(normalized) numbers, for example, an “implicit” bit (gen-
erally referred to as the “hidden bit”) is created by the
arithmetic control logic when the exponent of the floating
point number has a nonzero value. This “hidden bit” is not
represented in the storage format, but is assumed. It is
inserted at the time a floating point number is loaded into the
arithmetic registers and occupies the most significant bit
position of the fraction field of the number. During addition,
a single “guard” bit is set by the floating point control logic
during certain arithmetic operations, as an indicator of the
loss of significant bits of the floating point number being
processed. The guard bit is set when a right shift, required
for normalization, shifts a bit from the right side of the
fraction field capacity. The guard bit occupies a portion of
the fraction field. Finally, a “sticky” bit is set in certain
floating point arithmetic operations as an indicator that the
floating point number has lost some significant bits.

These extra bits in the fraction field are used exclusively
for rounding operations, after the result has been normal-
ized. The guard bit is treated as if it is a part of the fraction
and is shifted with the rest of the fraction during normal-
ization and exponent alignment and is utilized by the arith-
metic. The sticky bit is not shifted with the fraction, but is
utilized by the arithmetic. It acts as a “catcher” for bits
shifted off the right of the fraction; when a 1 is shifted off the
right side of the fraction, the sticky bit will remain a 1 until
normalization and rounding are finished.

There are typically four modes of rounding, as follows:
(1.) round to nearest; (2.) round to positive infinity; (3.)
round to negative infinity; and (4.) round to zero. Each of
these may introduce error into the calculation.

Though this standard is widely used and is useful for
many operations, this standard defines “precision” as the
maximum number of digits available for the significand of
the real number representation and does not define precision
as the number of correct digits in a real number represen-
tation. Neither does this standard provide for the calculation
and storage of error information and therefore permits
propagation of error including the potential loss of all
significant bits. These problems in the current standard can
lead to substantial accumulated rounding error and cata-
strophic cancellation error. Cancellation occurs when
closely similar values are subtracted, and it injects signifi-
cant error without a corresponding indication of this error in
the result.

Various authors have contributed to the standard or noted
these significant problems, but the problem persists.

U.S. Pat. No. 3,037,701 to Sierra issued in 1962 estab-
lishes the basis for hardware to perform fixed word length
floating point arithmetic including normalization, rounding,
and zero conversion. The Sierra patent describes the poten-
tial for introducing error in floating point operations includ-
ing total loss of useful information. No method is described
for calculating or retaining error information of any type.
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In 2010, in his book Handbook of Floating-Point Arith-
metic, Muller et al. describe the state-of-the-art of the
application of floating point including the ISO/IEC/IEEE
60599:2011 and describe error problems. They state, “Some-
times, even with a correctly implemented floating-point
arithmetic, the result of a computation is far from what could
be expected.”

In 1991, David Goldberg, in “What Every Computer
Scientist Should Know About Floating-Point Arithmetic,”
provides a detailed description and mathematical analysis of
floating point error. This paper describes rounding error (p.
6), relative error and error units in the last place (Ulps) (p.
8), the use of guard digits (p. 9), and cancellation error types,
both catastrophic and benign (p. 10). Recommended error
mitigation is limited to extending precision (again defined as
digits available for real number representation) requiring
additional storage space for computational results (p. 17)
and numerical error analysis of a given problem to deter-
mine the method of computation to minimize and limit the
error introduced by the computation.

Thus, many authors have acknowledged the existence of
these types of errors in the current standard for floating point
operations. In response, numerous attempts to address these
significant problems have been made.

In 2012 in the article “Floating-Point Numbers with Error
Estimates,” Glauco Masotti describes adding a data structure
to standard floating point format to contain statistical esti-
mates of the accumulated floating point error. This technique
increases required storage space, adds computation time,
and does not provide bounds for the error.

In 2008 in “The Pitfalls of Verifying Floating-Point
Computations,” David Monniaux presents the limitations on
static program analysis to determine the expected error
generated by code to perform a sequence of floating point
operations. However, static error analysis is prone to error
and relies on and assumes a lengthy and expensive algorithm
error analysis to ensure that the algorithm will provide
sufficiently accurate results.

In summary, the current state-of-the-art does not retain
error information within the associated floating point data
structure. At present, any retention of bounds on floating
point error requires significantly more memory space and
computation time (or correspondingly more hardware) to
perform error interval computations.

Further, in the current standard, when two values are
compared by subtraction in which cancellation occurs, pro-
gram flow decisions based on this erroneous comparison can
result in an incorrect decision. No validity of the resulting
comparison is provided by the standard conventions.

Importantly, the standard provides no indication when the
result of a computation no longer provides a sufficient
number of significant digits.

Additionally, conversion from external to internal format
or conversion between floating point formats may inject an
error in the initial representation of a real number without
recording that error.

Further, floating point values are converted to external
representation without indication of loss of significant bits
even if no significant bits remain in the output data.

Notably, current technology does not permit allowing
programmers to specify the number of required retained
significant digits.

Thus, the various methods provided by the current art for
floating point error mitigation have unresolved problems.
Accordingly, there is a need for an apparatus and method for
calculating and retaining a bound on error during floating
point operations.
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The discussion above is merely provided for general
background information and is not intended to be used as an
aid in determining the scope of the claimed subject matter.

SUMMARY OF THE INVENTION

The present invention is directed to a floating point
processing device and associated methods for calculating
and retaining a bound on error during floating point opera-
tions by the insertion of an additional bounding field into the
ANSVIEEE 754-2008 standard floating-point arithmetic for-
mat. This bound B Field has two major parts, the lost bits
field (D Field) and the accumulated rounding error field (N
Field). The N Field is subsequently divided into the round-
ing bits field (R Field) and the rounding error count field (C
Field), representing the sum of the carries from the sum of
the R Fields. The lost bits D Field is the number of bits in
the floating point representation that are no longer signifi-
cant. The bounds on the real value represented are deter-
mined from the truncated (round to zero) floating point value
(first bound) and the addition of the error determined by the
number of lost bits (second bound). This lost bits D Field is
compared to the (optionally programmable) unacceptable
loss of significant bits to provide a fail-safe, real-time
notification of the loss of significant bits.

The C Field of the floating point format of the present
invention, which is the sum of the carries from the sum of
the R Fields. (The term “field” refers to either a portion of
a data structure or the value of that portion of the data
structure, unless otherwise contextually defined.) When the
extension count exceeds the current lost bits, one is added to
the lost bits and the C Field is set to one. The R Field is the
sum of the rounded most significant bits of the rounding
error, lost during truncation.

The apparatus and method of the current invention can be
used in conjunction with the apparatus and method imple-
menting the current floating point standard. Conversion
between the inventive format and the current format can be
accomplished when needed; therefore, existing software that
is dependent upon the current floating point standard need
not be discarded. The new bounding field is added to the
conventional floating point standard to provide accumulated
information for the bound of the error that delimits the real
number represented.

Current standards for floating point have no means of
measuring and/or recording floating point rounding and
cancelation error. The present invention provides an appa-
ratus and method that classifies (as acceptable or as not
acceptable) the accumulated loss of significant bits resulting
from a floating point operation. This is done by comparing
the loss of significant bits of the current operation against the
unacceptable limit of the loss of significant bits. The unac-
ceptable limits for different widths of floating point numbers
can be provided in two ways, hardware or programmable.
The hardware provides a default value. For example, in
single precision (32-bit), the default value could require 3
significant decimal digits, which necessitates that the sig-
nificand retains 10 significant bits. In a 64-bit double pre-
cision example, the default value could require 6 significant
decimal digits, which necessitates that the significand retains
20 significant bits. The second way to provide the unaccept-
able limit is by a special floating point instruction that sets
the limit on the error bound for the specified precision. The
current invention provides a means of measuring, accumu-
lating, recording, and reporting these errors, as well as
optionally allowing the programmer to designate an unac-
ceptable amount of error.
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This is an advantage over the current technology that does
not permit any control on the allowable error. The current
invention not only permits the detection of loss of significant
bits, but optionally allows the number of required retained
significant digits to be specified.

When the loss of significant bits is greater than or equal
to the unacceptable limit, an inventive signaling NaN that
signals insufficient significant bits, termed “sNaN(isb),” is
generated indicating that the result no longer has the
required number of significant bits. This is in contrast to the
current technology, which does not provide an indication
when the result of a computation no longer provides a
sufficient number of significant bits.

In contrast to the conventional floating point standard,
which does not retain error information within the associated
floating point data structure, the present invention provides
error information in the lost bits D Field within the floating
point data structure. Two bounds are provided. The first
bound is the real number represented by the exponent and
the truncated significand, and the second bound is deter-
mined by adding to the first bound a maximum error value
represented by the lost bits D Field.

Using current technology error can be reduced by increas-
ing computation time and/or memory space. The present
invention provides this error information within the inven-
tive data structure with little impact on space and perfor-
mance.

In the standard floating point implementation cancellation
injects significant error without a corresponding indication
in the result. In contrast, the present invention accounts for
cancellation error in the lost bits D Field.

The instant invention provides a method of recording the
error injected by the conversion of an external representation
to the inventive internal representation (or of recording the
error in conversion between internal representations).

Currently floating point values are converted to external
representation without indication of loss of significant digits
even when no significant bits exist. In contrast, the current
invention provides the inventive signaling Not-a-Number,
sNaN(isb) when insufficient significant bits remain.

In the current art, static error analysis requires significant
mathematical analysis and cannot determine actual error in
real time. This work must be done by highly skilled math-
ematician programmers. Therefore, error analysis is only
used for critical projects because of the greatly increased
cost and time required. In contrast, the present invention
provides error computation in real time with, at most, a small
increase in computation time and a small decrease in the
maximum number of bits available for the significand.

The dynamic error analysis by means of error injection,
used in the current technology, has similar problems requir-
ing multiple execution of algorithms that require floating
point. Such techniques would be of little use when using
adaptive algorithms or when error information is required in
real time. The present invention eliminates the need for
multiple execution and provides error information in real
time.

Adding additional storage to retain statistical information
on error, which is a commonly proposed solution, signifi-
cantly increases computation time and required storage. The
present invention makes a slight decrease in the maximum
number of bits available for the significand for real number
representation in order to accommodate space for error
information. The storage space required by the present
invention is the same as standard floating point.

Though interval arithmetic provides a means of comput-
ing bounds for floating point computations, it requires
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greatly increased computation time and at least twice as
much storage. In contrast, the present apparatus for calcu-
lating and retaining a bound computes both the first and
second bounds on the real number represented and does this
within the execution of a single instruction. Additional
memory is not required. The computed bounds are fail safe.

An object of the present invention is to bound floating
point error when performing certain floating point arithmetic
operations in a floating point processing device.

These and other objects, features, and advantages of the
present invention will become more readily apparent from
the attached drawings and from the detailed description of
the preferred embodiments which follow.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The preferred embodiments of the invention will herein-
after be described in conjunction with the appended draw-
ings, provided to illustrate and not to limit the invention,
where like designations denote like elements.

FIG. 1 is a diagram of the inventive bounded floating
point format showing the new bound B Field of the present
invention which is composed of the lost bits D Field and the
N Field, where the N Field is, in turn, composed of the C
Field and the R Field.

FIGS. 2A-2B is a diagrammatic example of the logic and
control of the floating point operation showing the inventive
error bounding in an exemplary addition or subtraction
operation.

FIG. 3 is a diagram of the calculation of the exponent that
provides information utilized in the inventive bound logic of
FIGS. 2A, 4, and 7.

FIG. 4 is a diagram of the inventive dominant bound logic
and control of the error bounding of the present invention.

FIG. 5 is a diagram of the format of the post normalization
result derived from FIG. 7 that will contribute to the
determination of the inventive bound B Field.

FIGS. 6A-6B is a diagram of the inventive main bound
computation logic and control of the present invention that
provides information used in FIG. 2B and FIG. 8.

FIG. 7 is a diagram of the normalization logic and control
that produces a normalized result that will contribute to the
determination of the inventive bound B Field and is used in
FIGS. 2B, 6A, and 6B.

FIG. 8 is a diagram of the inventive exception logic and
control that determines if the error boundary has been
exceeded, which generates the inventive sNaN(isb) and also
determines if the result is significantly zero.

FIG. 9 is a diagram of the bounded floating point system
900.

Like reference numerals refer to like parts throughout the
several views of the drawings.

DETAILED DESCRIPTION OF THE
INVENTION

Shown throughout the figures, the present invention is
directed toward a bounded floating point system 900 includ-
ing a bounded floating point processing unit (BFPU) 950
and method for calculating and retaining a bound on error
during floating point operations, an example of which is
shown generally as reference number 200 (FIGS. 2A-2B). In
contrast to the standard floating point implementation that
introduces error without notification or warning, the present
bounded floating point format 100 provides a new error
bound B Field 52 (FIG. 1) that identifies and records a bound
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on the error and enables notification of loss of significant bits
via replacement of the result with an inventive sNaN(isb)
262, when insufficient significant bits remain.

Using the current floating point standard, error can be
introduced during alignment or normalization. In the inven-
tive apparatus and method, normalization during subtract
and other floating point operations can still result in the loss
of significant bits, such as through cancelation. When this
loss is significant in the current computation, this loss is
recorded in the bound on the number of lost significant bits,
which is termed the “result bound lost bits D 54F (FIG. 8)
stored in the lost bits field, the D Field 54.

When the outcome of a calculation results in insufficient
significant bits, the bounded floating point value, the “cal-
culated result” 260, is replaced with a special representation
for an invalid bounded floating point value that is not a
number (NaN), but is an inventive signaling NaN that
signals insufficient significant bits, termed the “sNaN(isb)”
262 (FIG. 2B), which indicates excessive loss of significant
bits. Memory in the hardware is provided for comparison to
the recorded accumulated error to determine whether suffi-
cient significant bits remain or whether sNaN(isb) 262
should be generated. As with other NaNs, the sNaN(isb) 262
is propagated into future computations. The sNaN(isb) 262
can be signaling to generate a hardware floating point
exception.

The circuitry for determining loss of significant bits may
contain an optionally programmable bound limit memory
802 to allow user determination of the number of significant
bits required by the user resulting from a floating point
calculation. The bound limit memory 802 contains a default
value for each precision floating point width and can be
programmable by the user.

When the inventive bounded floating point format 100 is
implemented, it can be used concurrently with implemen-
tations of the current floating point standard. Therefore,
existing software that is dependent upon the current floating
point standard need not be discarded.

The new bound B Field 52 is inserted in the conventional
floating point standard to provide accumulated information
on the bound of error that delimits the real number repre-
sented.

FIG. 1 provides a virtual bitwise layout of the bounded
floating point format 100 for word width of width k 101
showing the inventive bound B Field 52 (having a width b
103), which is composed of two parts, the lost bits D Field
54 (having a width d 105) and the N Field 55 (having a width
n 106), as well as the standard floating point format fields.
The N Field 55 is further composed of two fields, the C Field
56 (having a width ¢ 107) and the R Field 57 (having a width
r 108). The standard fields include the sign bit field, which
is the S Field 50, the exponent E Field 51 (having a width
e 102), and the significand field, which is the T Field 53
(having a width t 104).

This bound B Field 52 is a new field inserted within the
floating point standard format to provide accumulated infor-
mation on the bound of the represented real number. The
bound B Field 52 accounts for both rounding and cancella-
tion errors. This bound B Field 52 keeps track of the loss of
significant bits resulting from all previous operations and the
current operation. Recording this loss of significant bits then
allows a determination to be made as to whether insufficient
significant bits have been retained. When a sufficient loss of
significant bits occurs, this is signaled to the main processing
unit 910 by the sNaN selection control 811 (FIG. 8). When
insufficient significant bits have been retained, the BFPU
selects the sNaN(isb) 262 for the bounded floating point
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result 280 (selected from among a calculated result 260
value, a representation of sNaN(isb) 262, and a bounded
floating point representation of BFP zero 261).

The lost bits D Field 54 (FIG. 1) contains the represen-
tation of the number of bits in the floating point represen-
tation that are no longer significant.

The N Field 55 is the accumulation of the rounding errors
that occur from alignment and normalization.

The C Field 56 contains the representation of the sum of
the carries out of the R Field 57R (FIG. 5), which like the
R Field 57 has a width r 108, where the “R” designates the
result after normalization. The logical OR of the bits of the
extended rounding error X Field 60R, of width x 502, which
is used instead of the conventional carry and guard bits.
When the value of the C Field 56 exceeds the value of the
lost bits D Field 54, one is added to the value of the lost bits
D Field 54 and the C Field 56 is set to one (FIG. 6).

The R Field 57 contains the sum of the current R 57 and
the resulting rounding bits R 57R (FIG. 5), which is the most
significant r 108 bits lost due to truncation of the normalized
result 720. The apparatus and method for calculating and
retaining a bound on error during floating point operations is
shown in the exemplary bounded floating point addition/
subtraction diagram 200 shown on FIG. 2A and continuing
onto FIG. 2B. This diagram provides the logic and control
for an exemplary floating point addition or subtraction
operation showing the inventive bounding of the floating
point error (normally caused by alignment and normaliza-
tion) of the present invention.

The bounded floating point system includes a processing
device with a plurality of registers 990 (FIG. 9), a main
processing unit 910, and a bounded floating point unit
(BFPU) 950 that is communicably coupled to the main
processing unit 910. The main processing unit 910 executes
internal instructions and outputs at least two types of BFPU
instructions 930, 830 to the BFPU 950. The first type is a
bounded floating point operation instruction 930, which
instructs the BFPU 950 on the type of arithmetic operation
to be performed and provides the two input operands 201,
202. The second type is a bound limit instruction 830, which
is an instruction to set a default bound limit 833 or to set a
programmed bound limit 831.

The arithmetic operation is performed on two input oper-
ands 201, 202, which in the example of FIGS. 2A, 2B, are
stored in the first operand register 210 and the second
operand register 220, respectively. Then the BFPU 950
generates a result value, the bounded floating point result
280, from executing the FPU instructions on the bounded
floating point number inputs 201, 202. This bounded floating
point result 280 includes an error bound value obtained from
the accumulated cancellation error and the accumulated
rounding error. When there are insufficient significant bits in
the bounded floating point result 280, the BFPU 950 gen-
erates an sNaN selection control 811 signaling insufficient
significant bits. The BFPU 950 also writes the bounded
floating point result 280 to a main processing unit 910
solution register of the plurality of registers 990, thereby
storing the results from the operation of the bounded floating
point unit 950.

The first operand register operand 210 of FIG. 2A is the
register (where a register may be a hardware register, a
location in a register file, or a memory location) that contains
the first operand 201 in the bounded floating point format
100.

The first operand 201 of FIG. 2A is the bounded floating
point first addend for an addition operation or is the minuend
for a subtraction operation. The first operand 201 includes a
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first operand S value 50A, a first operand exponent E value
51A, a first operand bound B value 52A, and the first
operand significand T value 53A.

The first operand register operand 220 of FIG. 2A is the
register (where a register may be a hardware register, a
location in a register file, or a memory location) that contains
the first operand 202 in the bounded floating point format
100.

The second operand 202 is the bounded floating point
second addend for an addition operation or is the subtrahend
for a subtraction operation. The second operand 202
includes a second operand sign bit S 50B, a second operand
exponent E 51B, a second operand bound B 52B, and the
second operand significand T 53B.

Many steps within this bounded floating point addition/
subtraction diagram 200 of FIGS. 2A-2B are conventional
steps (which are generally denoted by dashed lines), but
some results from these conventional steps are utilized in the
inventive apparatus and method.

Turning to the exponent logic steps 300 of FIGS. 2A, 3,
the first operand exponent E 51A (coming from the first
operand 201 of FIG. 2A) and the second operand exponent
E 51B (coming from the second operand 202 of FIG. 2A) are
compared in the exponent comparator 301 to determine the
largest exponent control 302. The largest exponent control
302 is the control signal that controls the first and second
significand swap multiplexers 230, 231 (FIG. 2A), controls
the largest and smallest exponent selection multiplexers 310,
311, and controls the first and second bound swap multi-
plexers 401, 402 (FIG. 4).

Additionally, as seen on FIG. 3, the largest exponent
control 302 is the control signal identifying the larger of the
first operand exponent E 51A or the second operand expo-
nent E 51B and controls the largest exponent selection
multiplexer 310. The largest exponent selection multiplexer
310 selects the largest exponent E 51D from the first operand
exponent E 51A and the second operand exponent E 51B
controlled by the largest exponent control 302. The smallest
exponent selection multiplexer 311 is also controlled by the
largest exponent control 302 and selects the smallest expo-
nent E 51E from the first operand exponent E 51A and the
second operand exponent E 51B. The exponent difference
321 is calculated by the exponent subtractor 320 that sub-
tracts the smallest exponent E 51E from the largest exponent
E 51D. The exponent difference 321 controls the alignment
shifter 240 (FIG. 2A) and is used by the lost bits subtractor
410 (FIG. 4).

Additionally, as seen on FIG. 2A, the largest exponent
control 302 provides control for the first and second signifi-
cand swap multiplexers 230, 231 (FIG. 2A). The first
significand swap multiplexer 230 selects from either the first
operand significand T 53 A or the second operand significand
T 53B and produces the significand T of the operand with the
smallest exponent E 53D. Similarly, the second significand
swap multiplexer 231 selects the significand T of the oper-
and with the largest exponent E 53E from either the first or
second operand significands T 53A, 53B.

The alignment shifter 240 (FIG. 2A) shifts the significand
T of the operand with the smallest exponent E 53D to the
right by the number of bits determined by the exponent
difference 321 (coming from the exponent logic 300, FIG. 3)
to produce the aligned significand T of the operand with the
smallest exponent E 241. Only one bits (not zero bits)
shifted out of the alignment shifter 240 causing alignment
shift loss 242 are inserted into the least significant bit of the
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aligned significand T of the operand with the smallest
exponent E 241 ensuring that a significand excess 741 will
be detected.

The significand adder 250 (FIG. 2A) calculates the sum or
difference 251 of the aligned significand T of the operand
with the smallest exponent E 241 and the significand T of the
operand with the largest exponent E 53E. The virtual width
v 501 (FIG. 5) of the significand adder is the width of the
resulting sum or difference taking into account possible need
for multiple additions necessary to accommodate extended
bounded floating point formats.

FIG. 5 provides a detail of the format 500 of the post
normalization result, which is the format of the bounded
floating point significand adder result 720 after normaliza-
tion. This format includes: (1.) the standard hidden bit H
Field 510, the left justified hidden bit H Field 510 after
normalization; (2.) the resulting normalized significand T
53R (t 104 bits in width), the resulting significand after
normalization; (3.) the resulting rounding bits R Field 57R
of width r 108 holding the most significant bits of the
resulting significand that are lost due to truncation; and (4.)
the extended rounding error X Field 60R of width x 502
containing the bits of the result lost due to truncation, which
is to the right of the R Field 57R in the format.

The calculated sum or difference 251 (FIG. 2A) is utilized
in the normalization logic 700 of FIG. 2B, which is
expanded on FIG. 7. Turning to the details of the normal-
ization logic 700 of FIG. 7, the sum or difference 251 is used
by the right shifter 703 or left shifter 712 to arrive at the
normalized result 720. The first control for this determina-
tion is the right shift control 702 controlling the right shifter
703, which is determined by the carry detection 701. The
right shifter 703, when indicated by the right shift control
702, shifts the sum or difference 251 right one bit producing
the right shift result 704. The right shift loss 705 is a one bit
shifted out of the right shift result 704. When this occurs, a
one bit is inserted into the least significant bit of the right
shift result 704 ensuring that a significand excess 741 will be
detected. This right shift result 704 is utilized in the left
shifter 712. When the right shift control 702 is not asserted,
the right shift result 704 is equal to the sum or difference
251.

Also in FIG. 7, the sum or difference 251 is used in the
most significant zeros counter 710, which is another control.
The zeros counter 710 counts the most significant zeros of
the sum or difference 251, which produces the number of
leading zeros 711 necessary to normalize the result. The
number of leading zeros 711 controls the left shifter 712 by
shifting the right shift result 704 left producing the normal-
ized result 720 comprised of the truncated resulting signifi-
cand T 53C, the normalized rounding R 57A, and the
normalized extension X 60A. If the most significant zeros
counter 710 determines that there are no leading zeros, the
normalized result 720 is equal to the right shift result 704.
If there is no right or left shift, the value is merely passed
through (which occurs if there is no carry and if there are no
significant zeros). The number of leading zeros 711 is also
used in the exponent normalization adder 730 and is further
used in the inventive main bound logic 600 of FIG. 2B,
which is expanded on FIG. 6.

Still on FIG. 7, the largest exponent E 51D (from FIG. 3)
is adjusted for normalization by the exponent normalization
adder 730 using the right shift control 702 and the number
of leading zeros 711.

The normalized extension X 60A is derived from the X
Field 60R of the post normalization result format 500 (FIG.
5) of the normalized result 720.
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The excess significand detector 740 produces the logical
OR of all bits of the normalized extension X 60A producing
the significand excess 741. The significand excess 741 is
utilized by the count adder 640 (FIG. 6B) of the inventive
main bound logic 600 (FIGS. 2B, 6A-6B).

The exponent normalization adder 730 (FIG. 7) adds the
right shift control 702, or subtracts the number of leading
zeros 711, to or from the largest exponent E 51D to produce
the result exponent E 51C, which is the exponent in the
inventive calculated result 260 of FIG. 2B.

The sign logic 290 of FIG. 2B operates in the conven-
tional manner, determining the result sign bit S 50C from the
operand sign bit S 50A, the second operand sign bit S 50B,
and the right shift control 702.

Turning to the exemplary diagram 200 of the logic and
control of the inventive apparatus and method of FIG. 2B,
the calculated result 260 is created from the concatenation of
the result sign bit S 50C, the result exponent E 51C of FIG.
7, the result bound B 52C of FIG. 6A, and the truncated
resulting significand T 53C of FIG. 7.

Turning to the exemplary diagram 200 of the logic and
control of the inventive apparatus and method of FIG. 2A,
the first operand bound B 52A of FIG. 2A, the second
operand bound B 52B of FIG. 2A, the largest exponent
control 302 of FIG. 3, and the exponent difference 321 of
FIG. 3 are used in the dominant bound logic 400 of FIG. 2A,
which is expanded in FIG. 4.

In an arithmetic operation, the operand with the least
number of significant digits determines (“dominates™) the
number of significant digits of the result. When, after being
aligned, the number of significant bits in one operand is less
than the significant bits in the other operand, the significant
bits of the operand with fewer significant bits governs or
dominates the base significant bits of the result. The domi-
nant bound logic 400 selects the bound from the initial
operands, first operand bound B 52 A and the second operand
bound B 52B, to determine the bound with the most influ-
ence on the bound of the result prior to accounting for
cancellation and rounding.

As seen in the dominant bound logic 400 of FIG. 4, the
bounds of both operands (first and second operand bounds B
52A, 52B of FIG. 2A) are compared—with one bound
adjusted before comparison. The dominant bound logic 400
determines the dominant bound B 52H. The dominant bound
B 52H is the larger of (1.) the clamped bound B 52G and (2.)
the bound of the operand with the largest exponent (largest
exponent operand bound B 52E). This dominant bound B
52H is the best-case bound of the operand when there is no
rounding or cancellation. In an arithmetic operation, the
adjusted operand with the least number of significant bits
dominates this determination of the bound of the result,
because the dominant bound B 52H (from the bounds B 52G
or 52E, where clamped bound B 52G is derived from the
adjusted bound of the operand with the smallest exponent B
52F) with the largest number of lost bits is this best-case
bound.

Turning to the details of FIG. 4, the first bound swap
multiplexer 401, controlled by the largest exponent control
302 (from FIG. 3), selects from either the first operand
bound B 52A or the second operand bound B 52B (both from
FIG. 2A), resulting in the smallest exponent operand bound
B 52D. The second bound swap multiplexer 402, which is
also controlled by the largest exponent control 302, selects
from either the second operand bound B 52B or the first
operand bound B 52A, which results in the largest exponent
operand bound B 52E.
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The lost bits subtractor 410 is a circuit that subtracts the
exponent difference 321 (FIG. 3) from the smallest exponent
operand bound lost bits D 54A, the lost bits portion of the
smallest exponent operand bound B 52D, producing the
adjusted smallest exponent operand bound lost bits D 54B.
The adjusted smallest exponent operand bound lost bits D
54B is concatenated with the smallest exponent operand
bound accumulated rounding error N 55A to form the
adjusted bound of the operand with smallest exponent B
52F. The subtraction may produce a negative adjusted
smallest exponent operand bound lost bits D 54B indicating
that there are no significant digits lost during alignment at
the alignment shifter 240 (FIG. 2A); this case is dealt with
via the bound clamp 420. The bound clamp 420 prohibits the
adjusted bound of the operand with the smallest exponent B
52F from underflowing to less than zero. This limits the
clamped bound B 52G to zero or greater. Zero indicates that
all the bits of this adjusted operand are significant.

The bound comparator 430 compares the largest exponent
operand bound B 52E to the clamped bound B 52G to
determine the dominant bound control 431. This dominant
bound control 431 is asserted when the largest exponent
operand bound B 52E is greater than the clamped bound B
52G. The dominant bound control 431 is used by the
dominant bound multiplexer 440 that selects the dominant
bound B 52H from either the largest exponent operand
bound B 52E or the clamped bound B 52G and is utilized in
the main bound logic 600 of FIG. 6A.

Turning now to FIG. 6A, the main bound logic 600
determines the result bound B 52C of the calculated result
260 (FIG. 2B) of the current operation. The inputs for this
are (1.) the dominant bound B 52H of FIG. 4, (2.) the
number of leading zeros 711 (the number of most significant
zeros, from FIG. 7), and (3.) the carry adjusted bound B 52M
of FIG. 6B. The result bound B 52C is utilized by the
calculated result 260 of FIG. 2B and the determination of the
result bound lost bits D 54F of FIG. 8.

In this cancellation path, when shifting right, significant
bits are lost. These lost significant bits must be added to the
dominant bound lost bits D 54C. The dominant bound lost
bits D 54C is the lost bits 54 of the dominant bound B 52H.
This dominant bound lost bits D 54C is used in the lost bits
adder 610, which adds the number of leading zeros 711
(from FIG. 7) to the dominant bound lost bits D 54C,
resulting in the adjusted lost bits D 54D. The adjusted lost
bits D 54D is concatenated with the dominant bound accu-
mulated rounding error N 55B to create the cancellation
adjusted bound B 52J. The dominant bound accumulated
rounding error N 55B is the accumulated rounding error of
the dominant bound B 52H.

Turning to FIG. 6B, the count adder 640 adds the accu-
mulated rounding error N 55B, the normalized rounding R
57A (FIG. 7), and significand excess 741 (FIG. 7) producing
the updated accumulated rounding error N 55C.

The count comparator 650 asserts the count overflow 651
when the updated accumulated rounding error extension
count C 56A is greater than the dominant bound lost bits D
54C of FIG. 6A. The updated accumulated rounding error
extension count C 56A is the extension count 56 portion of
the updated accumulated rounding error N 55C. The domi-
nant bound lost bits D 54C and the count overflow 651 are
utilized by the lost bits incrementer 660 and the adjusted
bound multiplexer 670.

The lost bits incrementer 660 adds one to the dominant
bound lost bits D 54C when the count overflow 651 is
asserted producing the incremented lost bits D 54E. The lost
bits adjusted bound B 52L is the bound comprised of the
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concatenation of the incremented lost bits D 54E, an exten-
sion count having a value of one in the C Field 56, and
normalized rounding R 57A.

The count adjusted bound B 52K is the concatenation of
the dominant bound lost bits D 54C with the updated
accumulated rounding error N 55C.

The adjusted bound multiplexer 670 selects either the lost
bits adjusted bound B 521 when the count overflow 651 is
asserted, or selects the count adjusted bound B 52K to
produce the carry adjusted bound B 52M utilized by the
count comparator 650 of FIG. 6B.

The cancellation detector 620 (FIG. 6A) asserts cancel-
lation control 621 when there is cancellation by determining
that the number of leading zeros 711 is greater than one. This
condition would be false, for instance, during an add opera-
tion with like signs. This condition is true when cancelation
has occurred during a subtract or other operation in which
cancellation may occur.

The result bound multiplexer 630 (FIG. 6A) selects either
the cancellation adjusted bound B 527 or the carry adjusted
bound B 52M of FIG. 6B depending on the cancellation
control 621. The result is the result bound B 52C to be
included in the final result of the current operation (the
calculated result 260 of FIG. 2B).

Referring now to the exception logic 800 of FIG. 8, the
exception logic 800 provides controls (821 and 811) for the
exceptions requiring specialized representation, zero and
NaN. Considering the specialized representation of zero, the
result of a subtract instruction yields a representation of zero
when the significant bits of the result are zero. This is
determined by comparing the resulting lost bits to the
number of bits available in the operands of the current
operation. Considering the specialized representation of the
sNaN(isb) 262 (of FIG. 2B)], if it is determined that the
results lost bits D 54F is greater than the unacceptable limit
804, then the bounded floating point result 280, FIG. 2B, is
the specialized representation “sNaN(isb).”

Turning to the details of FIG. 8, the significand capacity
memory 803 is a static memory that provides the size of the
T Field 53 plus one for the hidden bit H Field 510 (t+1,
where width t 104 is the width of the significand T, as seen
on FIG. 1) for the width of the current operation. Memory
is addressed by the operation width control 801. The opera-
tion width control 801 is a signal provided by the processor
indicating the width of the current bounded floating point
operation in the form of an address. The significand capacity
memory 803 produces the significand capacity 805, which is
the total number of bits of the significand of the result
(including the hidden bit H 510).

The results lost bits D 54F is the lost bits of the result
bound B 52C (FIGS. 2B, 6A). The zero detection compara-
tor 820 asserts the zero selection control 821 (FIG. 2B) when
the results lost bits D 54F is greater than or equal to the
significand capacity 805.

The bound limit memory 802 is a memory (static or
optionally dynamic) containing the unacceptable limit 804
on the result lost bits D 54F for the current operation format
width. This bound limit memory 802, also addressed by the
operation width control 801, provides the unacceptable
bound limit 804.

The sNaN detection comparator 810 asserts the sNaN
selection control 811 when the result lost bits D 54F is
greater than or equal to the unacceptable bound limit 804.
The sNaN selection control 811 is the signal provided to the
exception and result multiplexer 270 (FIG. 2B) to select the
sNaN(isb) 262 as the bounded floating point result 280 (FIG.
2B).
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In the inventive apparatus and method, initially the bound
limit memory 802 contains the default bound limit 833
values, which can be static (default) or dynamic (pro-
grammed bound limit 831).

In the optional dynamic case shown on the right in FIG.
8, the bound limit can be changed from the default bound
limit 833 value(s). The programmed bound limit 831 is a
value provided by an optional bounded floating point
instruction. This bounded floating point instruction stores an
unacceptable bound limit 804 value in the bound limit
memory 802 in a location determined by the operation width
control 801 and occurs when the memory receives the limit
write instruction 830. The optional bounded floating point
limit write instruction 830 provides an elective write control.
This instruction stores a programmed bound limit 831 into
the bound limit memory 802 into an address determined by
the operation width control 801.

The bound limit memory default reset control 832 is an
elective control signal from an optional special bounded
floating point instruction that resets all bound limit memory
802 locations to a default bound limit 833 specific for each
of the bound limit memory 802 locations, which may be
based on the precision. Optionally, the bound limit memory
default reset control 832 can designate a particular bound
limit memory 802 location that is to be reset to a default
bound limit 833, which is determined by the operation width
control 801.

In a first example, for single precision (32-bit, width k
101=32) bounded floating point operation, if the T Field 53
is 16 bits in width (t 104=16) providing 17 significant bits
including the hidden bit H 510 (5 significant decimal digits),
then the width of the lost bits D Field 54 (d 105) and C Field
56 (¢ 107), would need to be 3 bits each. This accommodates
the standard 8-bit exponent, E Field 51 (width e 102) and
allows 1 bit for the R Field 57 making the N Field 55 4 bits
(n 106=4). If the desired default significance is 3 decimal
digits, then 10 binary bits including the hidden bit H 510 are
required. This would mean that the allowable number of
results lost bits D Field 54F (width d 105) could not exceed
7, the required value of the acceptable bound limit 804 for
the bound limit memory 802 selected by the operation width
control 801 for a single precision bounded floating point
operation.

As an additional example, for a double precision (64-bit,
width k 101=64) bounded floating point operation, if the T
Field 53 is 36 bits in width (width t 104=36), providing 37
significant bits (11+ significant decimal digits) including the
hidden bit H 510, as specified in the significand capacity
memory 803 location corresponding to a double precision
operation, then the width of the lost bits D Field 54 (d 105)
and the C Field 54 (¢ 107) would need to be 6 bits each
allowing 4 bits for the R Field 57 (width r 108=4) thereby
making the N Field 55 10 bits (width n 106=10). If the
desired default decimal significance is 6 decimal digits, then
20 binary bits, including the hidden bit H 510, are required.
This would mean that the allowable number of results lost
bits D 54F could not exceed 17, the required value of the
acceptable bound limit 804 for the bound limit memory 802
selected by the operation width control 801 for a double
precision bounded floating point operation.

Turning back to FIG. 2B, the exception and result mul-
tiplexer 270 selects the bounded floating point result 280
from either the calculated result 260, BFP zero 261, or
sNaN(isb) 262 based on the zero selection control 821 or the
sNaN selection control 811. The zero selection control 821
takes precedence over the sNaN selection control 811. If
neither the zero selection control 821 nor the sNaN selection
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control 811 is asserted, then the bounded floating point result
280 is the calculated floating point result 260.

Where O is the exponent offset, t is the width of the
significand, T is the value of the significand, S is the sign 0
or 1, E is the exponent, D is the lost bits, and 2 is the hidden
bit H 510:

the real value represented by a non-zero, non-NaN, and
normalized bounded floating point value lies between the
following:

—15x((T+25/27 59 and -15x((T+2%42P)271HEC

and for denormalized values (where the value of the E
Field is zero and there are no hidden bits), the first and
second bounds are the following:

—15xT/25! and -15x(T+2P)/2!

and the expected value is the average of the first and
second bounds.

Error that is introduced into floating point values when
converted from an external decimal representation can be
recorded in this inventive floating point representation.
Conversion to external representation of a real number in
decimal can be confined to only significant bits or can be
expressed as a bounded real number of the form v+/-e where
v is the expected real value expressed as a real number (in
the format xx107), where x is a decimal value and p is an
integer power of 10) and e is the first and second bound of
the error expressed as a similarly formatted real number.

In the present inventive apparatus and methods when two
values are compared by subtraction in which cancellation
occurs two considerations are made, as follows.

In considering equality, when the two operands are equal
in their significant bits, the result will truly be zero. As noted
above, when the number of lost bits exceeds the number of
bits available for the significand (or exceeds the significand
capacity 805), the result of the equality comparison opera-
tion is set to the representation for zero. However, when the
result is significantly zero in a subtraction operation, and that
result is used in additional mathematical operations, it may
be desirable to retain the bound field for that zero. This may
require separate bounded floating point operations for com-
parison and subtraction.

In considering non-equality, in which there are typically
four instances, which are greater-than, less-than, greater-
than-or-equal-to, and less-than-or-equal-to, there are only
two instances that need to be considered, because equal-to is
handled as noted above. In considering greater-than, if the
maximum value of the first operand is greater than the
maximum value of the second operand, then the first oper-
and is greater than the second operand. Similarly, if the
minimum value of the second operand is less than the
minimum value of the first operand, then the first operand is
greater than the second operand.

In some instances, the sign of the result of the operation
does not necessarily reflect the greater-than or less-than
condition. This occurs when the minimum value of the first
operand is less than the maximum value of the second
operand and the maximum value of the second operand is
greater than the minimum value of the first operand. In this
instance, conventional methods may be relied upon to deter-
mine the result. These instances may also require special
bounded floating point instructions.

In the present inventive apparatus and method, conversion
of one bounded floating point width to a larger bounded
floating point width (e.g., 32-bit to 64-bit, etc.) requires
conversion of the loss of significant bits D Field 54 from the
narrow width to the wider width. This requires that the
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number of retained significant bits be calculated for the first
width and then converted to loss of significant bits for the
second width. This may result in the generation of the
sNaN(isb) 262 when converting, for instance, from 32-bit to
64-bit bounded floating point representations, when the
newly computed loss of significant bits exceeds the limit
value (unacceptable bound limit 804) for the new width.
Similarly, when converting from wider to narrower bounded
floating point widths, all of the bits may be significant but
bits lost from the X Field 60R (FIG. 5) obtained from the
wider representation must be accumulated as the initial loss
of significant bits.

The exemplary embodiment depicted herein, describes a
bounded floating point circuit with real-time error bound
tracking within or in association with a processor, computer
system, or other processing apparatus. In this description,
numerous specific details such as processing logic, proces-
sor types, micro-architectural conditions, events, enable-
ment mechanisms, and the like are set forth in order to
provide a more thorough understanding of embodiments of
the present invention. It will be appreciated, however, by one
skilled in the art, that the invention may be practiced without
such specific details. Additionally, some well-known struc-
tures, circuits, and the like have not been shown in detail to
avoid unnecessarily obscuring embodiments of the present
invention.

One embodiment of the present invention may provide a
single core or multi-core bounded floating point processor or
may be included in other floating point or general purpose
processors. The processor may comprise a register file and
a permutation (multiplexer) unit coupled to the register file.
The register file may have a plurality of register banks and
an input to receive a selection signal. The selection signal
may select one or more unit widths of a register bank as a
data element boundary for read or write operations.

Although the herein described embodiments are described
with reference to a processor, other embodiments are appli-
cable to other types of integrated circuits and logic devices.
Similar techniques and teachings of embodiments of the
present invention can be applied to other types of circuits or
semiconductor devices that can benefit from higher pipeline
throughput and improved performance. The teachings of
embodiments of the present invention are applicable to any
processor or machine that performs data manipulations.
However, the present invention is not limited to processors
or machines that perform specific data width operations and
can be applied to any processor and machine in which
manipulation or management of data is performed whether
such operations are conducted with binary, decimal, or
binary encoded decimal data representations.

In addition, though the embodiment presented herein
represents an apparatus and associated method for bounded
floating point addition and subtraction, it is presented as an
example of bounded floating point operations. By extension,
the same inventive apparatus for calculating and retaining a
bound on error during floating point operations can be used
in other floating point operations such as multiplication,
division, square root, multiply-add, and other floating point
functions. Other embodiments may contain ancillary
bounded floating point operations such as conversion
between floating point formats including, but not limited to,
external representations of real numbers, standard floating
point, bounded floating point, and includes formats of vary-
ing width.

Although the examples provided herein describe instruc-
tion handling and distribution in the context of execution
units and logic circuits, other embodiments of the present
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invention can be accomplished by way of data or instruc-
tions stored on a machine-readable, tangible medium,
which, when performed by a machine, cause the machine to
perform functions consistent with at least one embodiment
of the invention. In one embodiment, functions associated
with embodiments of the present invention are embodied in
machine-executable instructions. The instructions can be
used to cause a general-purpose or special-purpose proces-
sor that is programmed with the instructions to perform the
steps of the present invention. Embodiments of the present
invention may be provided as a computer program product
or software which may include a machine or computer-
readable medium having stored thereon instructions which
may be used to program a computer (or other electronic
devices) to perform one or more operations according to
embodiments of the present invention. Alternatively, steps of
embodiments of the present invention might be performed
by specific hardware components that contain fixed-function
logic for performing the steps, or by any combination of
programmed computer components and fixed-function hard-
ware components.

Instructions used to program logic to perform embodi-
ments of the invention can be stored within a memory in the
system, such as DRAM, cache, flash memory, or other
storage. Furthermore, the instructions can be distributed via
anetwork or by way of other computer readable media. Thus
a machine-readable medium may include any mechanism
for storing or transmitting information in a form readable by
a machine (e.g., a computer), but is not limited to, floppy
diskettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet or other networks via
electrical, optical, acoustical or other forms of propagated
signals (e.g., carrier waves, infrared signals, digital signals,
etc.). Accordingly, the computer-readable medium includes
any type of tangible machine-readable medium suitable for
storing or transmitting electronic instructions or information
in a form readable by a machine (e.g., a computer).

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design in a number of manners. First, as is
useful in simulations, the hardware may be represented
using a hardware description language (HDL, e.g. VHDL) or
another functional description language. Additionally, a cir-
cuit level model with logic and/or transistor gates may be
produced. Furthermore, most designs, at some stage, reach
a level of data representing the physical placement of
various devices in the hardware model. In the case where
conventional semiconductor fabrication techniques are used,
the data representing the hardware model may be the data
specifying the presence or absence of various features on
different mask layers for masks used to produce the inte-
grated circuit. In any representation of the design, the data
may be stored in any form of a machine-readable medium.
A memory or a magnetic or optical storage such as a disc
may be the machine-readable medium to store information
transmitted via optical or electrical wave modulated or
otherwise generated to transmit such information. When an
electrical carrier wave indicating or carrying the code or
design is transmitted, to the extent that copying, buffering,
or re-transmission of the electrical signal is performed, a
new copy is made. Thus, a communication provider or a
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network provider may store on a tangible, machine-readable
medium, at least temporarily, an article, such as information
encoded into a carrier wave, embodying techniques of
embodiments of the present invention.

In modern processors, a number of different execution
units are used to process and execute a variety of code and
instructions. Not all instructions are created equal as some
are quicker to complete while others can take a number of
clock cycles to complete. The faster the throughput of
instructions, the better the overall performance of the pro-
cessor. Thus, it would be advantageous to have as many
instructions execute as fast as possible. However, there are
certain instructions that have greater complexity and require
more in terms of execution time and processor resources.
For example, there are floating point instructions, load/store
operations, data moves, etc.

As more computer systems are used in Internet, text, and
multimedia applications, additional processor support has
been introduced over time. In one embodiment, an instruc-
tion set may be associated with one or more computer
architectures, including data types, instructions, register
architecture, addressing modes, memory architecture, inter-
rupt and exception handling, and external input and output
T/0).

In one embodiment, the instruction set architecture (ISA)
may be implemented by one or more micro-architectures,
with associated micro-code, which includes processor logic
and circuits used to implement one or more instruction sets.
Accordingly, processors with different micro-architectures
can share at least a portion of a common instruction set. For
example, Intel® processors, Intel® Core™ processors, and
processors from Advanced Micro Devices implement nearly
identical versions of the x86 instruction set (with some
extensions that have been added with newer versions), but
have different internal designs. Similarly, processors
designed by other processor development companies, such
as ARM Holdings, [td., MIPS, or their licensees or adopters,
may share at least a portion a common instruction set, but
may include different processor designs. For example, the
same register architecture of the ISA may be implemented in
different ways in different micro-architectures using new or
well-known techniques, including dedicated physical regis-
ters, one or more dynamically allocated physical registers
using a register renaming mechanism (e.g., the use of a
Register Alias Table (RAT), a Reorder Buffer (ROB) and a
retirement register file). In one embodiment, registers may
include one or more registers, register architectures, register
files, or other register sets that may or may not be address-
able by a software programmer.

In one embodiment, a floating point format may include
additional fields or formats indicating various fields (number
of bits, location of bits, etc.). Some floating point formats
may be further broken down into or defined by data tem-
plates (or sub formats). For example, the data templates of
a given data format may be defined to have different subsets
of the data format’s fields and/or defined to have a given
field interpreted differently.

Scientific, financial, auto-vectorized general purpose,
RMS (recognition, mining, and synthesis), and visual and
multimedia applications (e.g., 2D/3D graphics, image pro-
cessing, video compression/decompression, voice recogni-
tion algorithms and audio manipulation) may require the
same operation to be performed on a large number of data
items. In one embodiment, Single Instruction Multiple Data
(SIMD) refers to a type of instruction that causes a processor
to perform an operation on multiple data elements. SIMD
technology may be used in processors that can logically
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divide the bits in a register into a number of fixed-sized or
variable-sized data elements, each of which represents a
separate value. For example, in one embodiment, the bits in
a 64-bit register may be organized as a source operand

containing four separate 16-bit data elements, each of which ;

represents a separate 16-bit value. This type of data may be
referred to as ‘packed’ data type or ‘vector’ data type, and
operands of this data type are referred to as packed data
operands or vector operands. In one embodiment, a packed
data item or vector may be a sequence of packed data
elements stored within a single register, and a packed data
operand or a vector operand may a source or destination
operand of a SIMD instruction (or ‘packed data instruction’
or a ‘vector instruction’). In one embodiment, a SIMD
instruction specifies a single vector operation to be per-

formed on two or more source vector operands to generate 13

a destination vector operand (also referred to as a result
vector operand) of the same or different size, with the same
or different number of data elements, and in the same or
different data element order.

In one embodiment, destination and source registers/data 20

are generic terms to represent the source and destination of

20

the corresponding data or operation. In some embodiments,
they may be implemented by registers, memory, or other
storage areas having other names or functions other than
those depicted. For example, in one embodiment, the cal-
culated result 260 may be a temporary storage register or
other storage area, whereas the first operand 201 and the
second operand 202 may be a first and second source storage
register or other storage area, and so forth. In other embodi-
ments, two or more of the operand and result storage areas
may correspond to different data storage elements within the
same storage area (e.g., a SIMD register). In one embodi-
ment, one of the source registers may also act as a destina-
tion register by, for example, writing back the result of an
operation performed on the first and second source data to
one of the two source registers serving as a destination
registers.

In one embodiment, a non-transitory machine-readable
storage medium comprising all computer-readable media
except for a transitory, propagating signal, may contain all or
part of the invention described herein.

GLOSSARY
No. Name Description
FIG. 1
field refers to either a portion of a data structure or the value of that
portion of the data structure
100 bounded floating provides a virtual bitwise layout of the new floating point format.

point format

50  sign bit field (S

Field)

51  exponent field (E

Field)

52 bound field (B
Field)

53 significand field (T

Field)

54 lost bits field (D

Field)

55  accumulated

rounding error field

(N Field)

56 rounding error

count field (C Field)

57 rounding bits field

(R Field)

101  bounded floating
point width

102 width e

103 width b

104  widtht

105 widthd

106  width n

107 width ¢

108  width r

is the standard floating point sign bit. (Information Technology -
Microprocessor Systems - Floating-Point Arithmetic, International
Standard, ISO/IEC/IEEE 60569: 2011. Geneva: ISO, 2011, p. 9)

is the biased floating point exponent. (Information Technology -
Microprocessor Systems - Floating-Point Arithmetic, International
Standard, ISO/IEC/IEEE 60569: 2011. Geneva: ISO, 2011, p. 9)

is a new field added to the floating point standard to provide
accumulated information on the bound of the represented real
number.

is the floating point significand. It is the fraction of the floating point
value less the hidden bit H 510 of the current art. (Information
Technology - Microprocessor Systems - Floating-Point

Arithmetic, International Standard, ISO/IEC/IEEE 60569: 2011.
Geneva: 1ISO, 2011, p. 9) The width t of the bounded floating point
format 100 is smaller than the corresponding standard format width
to accommodate the bound B Field 52.

is the number of bits in the floating point representation that are no
longer significant. This is a subfield of the bound B Field 52 of the
bounded floating point format 100.

is the accumulation of the rounding errors that occur from alignment
and normalization. This is a subfield of the bound B Field 52 of the
bounded floating point format 100. It is composed of the C Field 56
and the R Field 57.

is the sum of the carries from the sum of the R Field 57R from
successive operations. This is a subfield of the N Field 55 of the
bounded floating point format 100.

is the sum of the rounded most significant bits of the rounding error,
lost during truncation. This is a subfield of the N Field 55 of the
bounded floating point format 100.

is the width of a bounded floating point number. (Information
Technology - Microprocessor Systems - Floating-Point

Arithmetic, International Standard, ISO/IEC/IEEE 60569: 2011.
Geneva: 1ISO, 2011, pp. 13-14)

is the width, e, of the exponent E Field 51.

is the width, b, of the bound B Field 52.

is the width, t, of the T Fields 53 (FIG. 1), 53R (FIG. 5)

is the width, d, of the lost bits D Field 54.

is the width, n, of the N Field 55.

is the width, ¢, of the C Field 56.

is the width, r, of the R Fields 57 (FIG. 1), 57R (FIG. 5).
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GLOSSARY
No. Name Description
FIGS. 2A & 2B
200  bounded floating is the data and control flow diagram of the apparatus and method for
point computing the exemplary bounded floating point addition and
addition/subtraction subtraction operations, which can also be applied to other
diagram mathematical operations.

201  first operand data from the first operand register 210 of the registers 990 (where a
register may be a hardware register, a location in a register file, or a
memory location) conforming to the bounded floating point format
100 for an addition operation and the minuend for a subtract
operation.

202  second operand data from the second operand register 220 of the registers 990 (where
a register may be a hardware register, a location in a register file, or a
memory location) conforming to the bounded floating point format
100 for an addition operation and the subtrahend for a subtract
operation.

210  first operand is the register (where a register may be a hardware register, a location

register in a register file, or a memory location) that contains the first operand
201 in the bounded floating point format 100.
220  second operand is the register (where a register may be a hardware register, a location
register in a register file, or a memory location) that contains the first operand
202 in the bounded floating point format 100.
S0A first operand sign is the S Field of the first operand 201.
bit S Field
51A first operand is the E Field of the first operand 201.
exponent E
52A first operand bound provides the inventive bound B Field 52 for the first operand 201.
B
53A first operand is the T Field of the first operand 201.
significand T
50B second operand sign is the S Field of the second operand 202.
bit S Field
51B second operand is the E Field of the second operand 202.
exponent E
52B second operand Provides the inventive error bound for the second operand.
bound B
53B second operand is the T Field of the second operand 202.
significand T
230  first significand selects the significand of the operand with the smallest exponent 53D
swap multiplexer from either the first operand significand T 53A or the second operand
significand T 53B controlled by the largest exponent control 302.
231 second significand  selects the significand T of the operand with the largest exponent E
swap multiplexer 53E from either the first operand significand T 53A or the second
operand significand T 53B controlled by the largest exponent control
302.
53D significand T of the is the significand T of the operand with the smallest exponent E that
operand with the is modified by the insertion of the hidden bit H 510 with the
smallest exponent E modified significand left justified.
53E significand T of the is the significand T of the operand with the largest exponent E that is
operand with the modified by the insertion of the hidden bit H 510 with the modified
largest exponent E  significand left justified.

240  alignment shifter shifts the significand T of the operand with the smallest exponent E
53D to the right by the number of bits determined by the exponent
difference 321. In this invention, this shift may shift off lost bits and
the associated bound must be adjusted (see FIG. 4, Dominant Bound
Logic). Bits shifted out of the end of the alignment shifter are
inserted into the least significant bit of the result of the alignment
shifter.

241  aligned significand  is the aligned significand T of the operand with the smallest exponent

T of the operand E.
with the smallest
exponent E

242  alignment shift loss is a one bit shifted out of the alignment shifter 240. When this
occurs, a one bit is inserted into the aligned significand T of the
operand with the smallest exponent E 241 ensuring that a significand
excess 741 will be detected.

250  significand adder calculates the sum or difference 251 of the aligned significand T of
the operand with the smallest exponent E 241 and the significand T
of the operand with the largest exponent E 53E.

251 sum or difference is the sum or difference of the aligned significand T of the operand

with the smallest exponent E 241 and the significand T of the
operand with the largest exponent E 53E.
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GLOSSARY
No. Name Description
51C result exponent E is the final value of the exponent after normalization adjustment.
52C result bound B is the bound to be included in the final result.
53C truncated resulting  is the significand of the result of the operation rounded to zero.
significand T
260  calculated result is the final calculated result as the concatenation of the result sign bit
S 50C, the result exponent E 51C, the result bound B 52C, and the
truncated resulting significand T 53C.

261 BFP zero is zero in the bounded floating point representation.

262  sNaN(isb) is the bounded floating point representation of NaN (Not a Number,

insufficient significant bits).

270  exception and result selects the bounded floating point result 280 from either the
multiplexer calculated result 260, BFP zero 261, or sNaN(isb)262 based on the

zero selection control 821 or sNaN selection control 811.

280 bounded floating is the final bounded floating point value stored in the final result

point result register 285 of the registers 990 (where register may be a hardware
register, a location in a register file, or a memory location) of the
operation, a bounded floating point value, zero, or NaN.
285  final result register is a register of the registers 990 (where register may be a hardware
register, a location in a register file, or a memory location) containing
the bounded floating point result 280.

290  sign logic determines the result sign bit S 50C from the first operand sign bit S
50A and the second operand sign bit S 50B and the right shift control
702 (the effect on the sign after subtraction).

50C result sign bit S is the sign of the calculated result 260.
FIG. 3

300  exponent logic calculates the exponent difference 321 and identifies the largest
exponent control 302.

301  exponent compares the first operand exponent E 51A with the second operand
comparator exponent E 51B to determine the largest exponent control 302.

302  largest exponent is the control signal identifying the largest of the first operand
control exponent E 51A or the second operand exponent E 51B and controls

the first and second significand swap multiplexers 230, 231, the
largest and smallest exponent selection multiplexers 310, 311, and
the first and second bound swap multiplexers 401, 402.

310  largest exponent selects either the largest exponent E 51D from first operand exponent
selection E 51A or the second operand exponent 51B controlled by the largest
multiplexer exponent control 302.

311 smallest exponent  selects either the smallest exponent E 51E from the first operand
selection exponent E 51A or the second operand exponent E 51B controlled by
multiplexer the largest exponent control 302.

51D largest exponent E  is the largest of the first operand exponent E 51 A and the second
operand exponent E 51B determined by largest exponent control 302.
51E smallest exponent E is the smallest of the first operand exponent E 51A and the second
operand exponent E 51B determined by largest exponent control 302.
320 exponent subtractor calculates the exponent difference 321 between the largest exponent
E 51D and the smallest exponent E 51E.
321 exponent difference is the magnitude of the difference between the first operand exponent
E 51A and the second operand exponent E 51B and controls the
alignment shifter 240. In this invention the lost bits subtractor 410
also subtracts the exponent difference 321 from the count portion of
the smallest exponent operand bound B 52D to produce the adjusted
bound of the operand with smallest exponent B 52F.
FIG. 4

400  dominant bound uses the first operand bound B 52A, the second operand bound B

logic 52B, the largest exponent control 302, and the exponent difference
321 to determine the dominant bound B 52H. In an arithmetic
operation, the operand with the least number of significant digits
determines (“dominates™) the number of significant digits of the
result.

401  first bound swap selects either the smallest exponent operand bound B 52D from first
multiplexer operand bound B 52A or the second operand bound B 52B controlled

by the largest exponent control 302.
402  second bound swap selects either the largest exponent operand bound B 52E from the
multiplexer first operand bound B 52A or the second operand bound B 52B
controlled by the largest exponent control 302.
52D smallest exponent  is the bound of the operand with the smallest exponent.
operand bound B
52E largest exponent is the bound of the operand with the largest exponent.
operand bound B
54A smallest exponent  is the lost bits D portion of the smallest exponent operand bound B

operand bound lost
bits D

52D.
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55A smallest exponent  is the accumulated rounding error portion of the smallest exponent
operand bound B operand bound B 52D.
accumulated
rounding error N
410  lost bits subtractor  subtracts the exponent difference 321 from the smallest exponent
operand bound lost bits D 54A producing adjusted smallest exponent
operand bound lost bits D 54B.
54B adjusted smallest is the smallest exponent operand bound lost bits D 54A adjusted by
exponent operand  the exponent difference 321 to account for the increase in the
bound lost bits D significant bits of the operand with the smallest exponent operand
bound B 52D due to alignment.
52F adjusted bound of  is the concatenation of the adjusted smallest exponent operand bound
the operand with lost bits D 54B and the smallest exponent operand bound
smallest exponent B accumulated rounding error N 55A.
420  bound clamp prohibits the adjusted bound of the operand with smallest exponent B
52F from underflowing to less than zero when the lost bits subtractor
410 produces a negative value for the adjusted smallest exponent
operand bound lost bits D 54B. This limits the clamped bound B 52G
to zero or greater.
52G clamped bound B is the adjusted bound of the operand with smallest exponent B 52F
limited to zero or greater.
430 bound comparator ~ compares largest exponent operand bound B 52E to the clamped
bound B 52G to determine the dominant bound control 431.
431  dominant bound controls the dominant bound multiplexer 440 to select the dominant
control bound B 52H.
440  dominant bound selects either the largest of the largest exponent operand bound B
multiplexer 52E or the clamped bound B 52G to determine the dominant bound
B 52H.
52H dominant bound B is the largest of the largest exponent operand bound B 52E and the
clamped bound B 52G. This is the bound of the operand with the
least number of significant bits after alignment.
FIG. 5
500  post normalization  is the format of the bounded floating point significand adder result
result format 720 after normalization.

501  virtual width of is the width of the resulting sum or difference taking into account
significand adder possible need for multiple additions necessary to accommodate
extended bounded floating point formats.

510  hidden bit H is the left justified hidden bit H Field 510 after normalization.
53R resulting is the resulting significand after normalization. This result is
normalized truncated (round to zero) to form the final result significand T. This
significand T fleld is t bits in width.
57R resulting rounding  is a field (of width r 108) holding the most significant bits of the
bits R Field resulting significand that are lost due to truncation. These bits are
used to accumulate rounding error.
60R extended rounding  is a field (of width x 502) holding the bits of the result lost due to
error X Field truncation, which is to the right of the R Field 57R in the format.
These bits will provide something similar to a “sticky bit.”
502  extended rounding  is the virtual width, x, of the X Field 60R.
error width x
FIGS. 6A and 6B
600  main bound logic calculates the result bound B 52C from the dominant bound B 52H,
the carry adjusted bound B 52M, and the number of leading zeros
711.
54C dominant bound is the data in the lost bits D Field 54 of the dominant bound B 52H.
lost bits D
55B dominant bound is the accumulated rounding error N Field 55 of the dominant bound
accumulated B 52H.
rounding error N
610  lost bits adder adds the number of leading zeros 711 to the dominant bound lost bits
D 54C to obtain the adjusted lost bits D 54D. When a significand is
shifted left to normalize (cancellation), insignificant bits are shifted
in from the right increasing the number of lost bits in the result.
54D adjusted lost bits D is the dominant bound lost bits D 54C adjusted by the number of
leading zeros 711.
52] cancellation is the concatenation of the adjusted lost bits D 54D and the dominant
adjusted bound B bound accumulated rounding error N 55B.
620  cancellation asserts cancelation control 621 when there is cancellation by
detector determining that the number of leading zeros 711 is greater than one.

An add operation with like signs may require a one bit right shift.
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621  cancellation control is the control signal indicating that cancellation has occurred as
determined by the cancellation detector 620 controlling the result of
the result bound multiplexer 630.

630  result bound selects either the incremented adjusted bound B 527 or the carry

multiplexer adjusted bound B 52M depending on whether cancellation occurred
(cancellation control 621). This determines the result bound B 52C.

640  count adder adds the significand excess 741 to the dominant bound accumulated
rounding error N 55B and the normalized rounding R 57A yielding
the updated accumulated rounding error N 55C.

55C updated is the dominant bound accumulated rounding error N 55B adjusted
accumulated by the significand excess 741.
rounding error N

56A updated is the extension count 56 portion of the updated accumulated
accumulated rounding error N 55C.
rounding error
extension count C

650  count comparator compares the updated accumulated rounding error extension count C
56A to the dominant bound lost bits D 54C to produce the count
overflow 651.

651  count overflow is asserted when the updated accumulated rounding error extension
count C 56A is greater than or equal to the dominant bound lost bits
D 54C indicating that a single bit of significance is lost due to
rounding. When updated accumulated rounding error extension count
C 56A and the dominant bound lost bits D 54C are both zero, the
count overflow 651 is not asserted.

660  lost bits adds one to the dominant bound lost bits D 54C when the count

incrementer overflow 651 is asserted.
54E incremented lost is the dominant bound lost bits D 54C adjusted by the count
bits D overflow 651.
52K count adjusted is the bound comprised of the concatenation of the dominant bound
bound B lost bits D 54C with the updated accumulated rounding error N 55C.
521 lost bits adjusted is the bound comprised of the concatenation of the incremented lost
bound B bits D 54E, a one for the value of the C Field 56, and the normalized
rounding R 57A.
670  adjusted bound selects either the lost bits adjusted bound B 52L when count
multiplexer overflow 651 is asserted or the count adjusted bound B 52K
producing the carry adjusted bound B 52M.
52M carry adjusted is the bound adjusted for potential rounding error selected between
bound B the count adjusted bound B 52K and the lost bits adjusted bound B
52L.
FIG. 7

700 normalization logic produces the truncated resulting significand T 53C, the result
exponent E 51C, the number of leading zeros 711, the significand
excess 741, and the carry detection 701 from the sum or difference
251 and the largest exponent E 51D.

701  carry detection determines whether the sum or difference 251 had a carry out
requiring a right shift to normalize, right shift control 702.

702 right shift control controls whether the sum or difference 251 must be shifted right to
normalize. Controls the right shifter 703.

703 right shifter when indicated by the right shift control 702, shifts the sum or
difference 251 right one bit producing the right shift result 704. The
result is modified by the right shift loss 705.

704 right shift result is the result after normalizing the sum or difference 251 determined
by the right shift control 702. When the right shift control 702 is not
asserted the right shift result 704 is equal to the sum or difference
251.

705 right shift loss is a one bit (a true bit) shifted out of the right shift result 704, When
this occurs, a one bit is inserted into the right shift result 704
ensuring that a significand excess 741 will be detected.

710  most significant counts most significant zeros of the sum or difference 251 necessary

zeros counter to normalize by shifting left. Produces the number of leading zeros
711 to control the left shifter 712 and to contribute to the
computation of the result exponent E 51C.

711  number of leading  is the number of most significant leading zeros. Controls the left

Zeros shifter 712 and the cancellation detector 620.
712 left shifter shifts the right shift result 704 left the number of bits specified by

number of leading zeros 711 required to normalize the right shift
result 704 to produce the normalized result 720. If the most
significant zeros counter 710 results in no leading zeros, the
normalized result 720 is equal to the right shift result 704.
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720  normalized result is the result of normalizing the sum or difference 251.

730  exponent adjusts the largest exponent E 51D for normalization. When the right
normalization adder shift control 702 is asserted one is added to the largest exponent E

51D; otherwise the number of leading zeros 711 is subtracted from
the largest exponent E 51D. Either case produces the result exponent
E 51C.
57A normalized is the most significant r bits 108 of the normalized result 720 that are
rounding R lost due to truncation.
60A normalized is the x 502 inventive bits of the normalized result 720 to the right of
extension X the normalized rounding R 57A created by alignment or
normalization but lost due to truncation.

740  excess significand  creates the logical OR of all bits of the normalized extension X 60A
detector producing the significand excess 741.

741 significand excess  is the logical OR of all bits of the normalized extension X 60A.

FIG. 8

800  exception logic determines zero control 821 and sNaN selection control 811 from the
result bound B 52C, the unacceptable bound limit 804, and the
significand capacity 805.

801  operation width is a signal provided by the processor indicating the width of the

control current bounded floating point operation in the form of an address.

802  bound limit is an optionally dynamic memory containing the unacceptable limit
memory for the result lost bits D 54F. Initialized to default values or by an

optional special command to reset to default values. A special
optional processor command may set the contents of the bound limit
memory 802 to custom limits for lost significant bits. Memory is
addressed by the operation width control 801.

803  significand capacity is a static memory that provides the size of the significand (t + 1) for
memory the width of the current operation. Memory is addressed by the

operation width control 801.
804 unacceptable bound is the unacceptable limit (from the bound limit memory 802) for the
limit result lost bits D 54F selected by the current operation width control
801.
54F result bound lost is the data in the lost bits D Field 54 portion of the result bound B
bits D 52C.

805  significand capacity is the number of bits representing the significand, including the
hidden bit H 510, in the operands of the current bounded floating
point operation.

810 sNaN detection asserts the sNaN selection control 811 when the result lost bits D

comparator 54F is greater than or equal to the unacceptable bound limit 804.

811 sNaN selection is the signal provided to the exception and result multiplexer 270 to
control select sNaN(isb) 262 as the bounded floating point result 280.

820  zero detection asserts the zero selection control 821 when the results lost bits D 54F
comparator is greater than or equal to the significand capacity 805.

821  zero selection is the signal provided to the exception and result multiplexer 270 to
control select zero as the bounded floating point result 280.

830  limit write is optional bounded floating point instruction providing an elective
instruction write control. This instruction stores a programmed bound limit 831

into the bound limit memory 802 into an address determined by the
operation width control 801.

831 programmed bound is a value provided by an optional bounded floating point instruction.

limit This bounded floating point instruction stores an unacceptable bound
limit 804 value in the bound limit memory 802 in a location
determined by the operation width control 801.

832  bound limit is an optional control signal from an optional special bounded
memory default floating point instruction that resets all bound limit memory 802
reset control locations to the default bound limit 833.

833  default bound limit is a default value (having a pre-determined value for each precision)

stored in the bound limit memory 802 in a location determined by the
operation width control 801.
FIG. 9

900  bounded floating is a system for computing numbers in bounded floating point format

point system consisting of a main processing unit 910 with associated registers
990 and communicating with a bounded floating point unit (BFPU)
950.

910  main processing executes internal instructions accessing data 201, 202, 831, 280 from,

unit and to, a plurality of registers 990 (where a register may be a
hardware register, a location in a register file, or a memory location)
and outputs commands and data 201, 202, 831.

930  bounded floating a bounded floating point arithmetic instruction such as multiply,
point operation subtract, or the exemplar bounded floating point add operation.
instruction

940  sNaN(isb) a bounded floating point signaling NaN processor exception

exception

generated based on sNaN selection control 811.
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950  bounded is the portion of the bounded floating point system 900 that executes
floating point unit  bounded floating point operation instructions 930 on the first operand
(BFPU) 201 and the second operand 202 producing the bounded floating
point result 280 and the sNaN(isb) exception 940, when insufficient
significant bits remain in the result or executes the limit write
instruction 830 establishing the unacceptable bound limit 804.
990  registers is a plurality of registers (where a register may be a hardware

register, a location in a register file, or a memory location). Provides
storage for the bounded floating point first input operand 201, the
bounded floating point second input operand 202, bounded floating

point result (280), and the programmed bound limit 831.

The invention illustratively disclosed herein suitably may
be practiced in the absence of any element which is not
specifically disclosed herein.

wherein said result bound multiplexer (630) generates
a result bound B (52C) error value using a cancel-
lation adjusted bound B (52]) accumulated cancel-

Since many modifications, variations, and changes in 20 lation error and a carry adjusted bound B (52M)
detail can be made to the described preferred embodiments accumulated rounding error;
of the invention, it is intended that all matters in the wherein said sNaN detegtion comparator (810) gener-
foregoing description and shown in the accompanying draw- ates, when there are insufficient significant bits in
ings be interpreted as illustrative and not in a limiting sense. said calqulated result.(260.) Va}ue, a s.NaN.sel.ectlon
Thus, the scope of the invention should be determined by the » E%I:ml signal (811) signaling insufficient significant
appended claims and their legal equivalents. wherein said exception and result multiplexer (270)
What is claimed is: selects said bounded floating point result (280) value
1. A processing device comprising: from among one of said calculated result (260)
a plurality of registers (990); 30 value, a representation of sNaN(isb) (262), a
a main processing unit (910) operable to execute internal bounded floating point representation of BFP zero
instructions and output FPU instructions (930, 830, (261), based on said sNaN selection control signal
831); (811) or a zero selection control (821); and
a bounded floating point unit (BFPU) (950) communica- wherein said BFPU (950) writes said bounded floating
bly coupled to said main processing unit (910); wherein 35 point result (280) value to said final result register

said BFPU (950) comprises a first operand register

(210), a second operand register (220), a final result

register (285); an exception and result multiplexer

(270), an sNaN detection comparator (810), and a result

bound multiplexer (630);

wherein said first operand register (210) accommodates
a first operand (201) in a bounded floating point
format (100); wherein said bounded floating point
format (100) comprises a sign bit S Field (50), an

40

(285).

2. The processing device as recited in claim 1, wherein
said bound limit selection instruction comprises one of: a
bound limit memory default reset control (832) instruction
and a limit write control (830) instruction to set a pro-
grammed bound limit (831) value.

3. The processing device as recited in claim 1, wherein
said exception and result multiplexer (270) selection of said
bounded floating point result (280) value comprises:

exponent E Field (51), a bound B Field (52), and a 45  selecting said BFP zero (261) if said zero selection control
significand T Field (53); wherein said bound field (821) is asserted;

(52) comprises a lost bits D Field (54) and an selecting said sNaN(isb) (262) if said sNaN selection
accumulated rounding error N Field (55); wherein control signal (811) is asserted; and

said accumulated rounding error N Field (55) com- selecting said calculated result (260) if neither said zero
prises a rounding error count C Field (56) and a 50 selection control (821) or said sNaN selection control

rounding bits R Field (57);

wherein said second operand register (220) accommo-
dates a second operand (202) in said bounded float-
ing point format (100);

wherein said final result register (285) accommodates a
bounded floating point result (280) in said bounded
floating point format (100);

wherein said BFPU (950) receives at least two BFPU
instructions (930, 830) from said main processing
unit (910), wherein said BFPU instructions (930,
830) comprise a floating point operation instruction
(930) and a bound limit selection instruction (830,
832);

wherein said BFPU (950) generates a calculated result
(260) value from applying an operation of said
floating point operation instruction (930) on said first
operand (201) and said second operand (202);

55

60

65

(811) is asserted.

4. The processing device as recited in claim 1, wherein
said BFPU (950) further comprises a first bound swap
multiplexer (401) for selecting from either a first operand
bound B (52A) or a second operand bound B (52B) to
generate a smallest exponent operand bound B (52D).

5. The processing device as recited in claim 1, wherein
said BFPU (950) further comprises a second bound swap
multiplexer (402) for selecting from either a second operand
bound B (52B) or a first operand bound B (52A) to generate
a largest exponent operand bound B (52E).

6. The processing device as recited in claim 1, wherein
said BFPU (950) further comprises a lost bits subtractor
circuit (410) for subtracting an exponent difference (321)
from a smallest exponent operand bound lost bits D (54A)
to produce an adjusted smallest exponent operand bound lost
bits D (54B).
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7. The processing device as recited in claim 4, wherein
said BFPU (950) further comprises:

a second bound swap multiplexer (402) for selecting from
either said second operand bound B (52B) or said first
operand bound B (52A) to generate a largest exponent
operand bound B (52E); and

a lost bits subtractor circuit (410) for subtracting an
exponent difference (321) from a smallest exponent
operand bound lost bits D (54 A) to produce an adjusted
smallest exponent operand bound lost bits D (54B).

8. The processing device as recited in claim 5, wherein
said BFPU (950) further comprises a dominant bound mul-
tiplexer (440) that selects a dominant bound B (52H) from
either said largest exponent operand bound B (52E) or a
clamped bound B (52G).

9. The processing device as recited in claim 7, wherein
said BFPU (950) further comprises a dominant bound mul-
tiplexer (440) that selects a dominant bound B (52H) from
either said largest exponent operand bound B (52E) or a
clamped bound B (52G).

#* #* #* #* #*
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